Notes on Probability Primer 5: Multiple random variables
by 장승환
(PP 5.1) Multiple discrete random variables
Definition. Given $(\Omega, \mathscr{A}, P)$, a random vector is a measurable function
where $d \in \mathbb{N}$.
Definition. A discrete random vector $X \in \mathbb{R}^d$ is s.t. $X(\Omega)$ is countable.
Definition. The (joint) PMF (or joint distribution) of a discrete random vector $X \in \mathbb{R}^d$ is the function
such that $p(x)= P[X=x]$ for all $x \in \mathbb{R}^d$.
Notation. $X = (X_1, \ldots, X_d)$, $x = (x_1, \ldots, x_d)$
($X = x$ means $X_i = x_i$ for all $i$)
$p(x) = p(x_1, \ldots, x_d)$
$p_X(x) = p(x)$
Remark.
where $\mathscr{X} = X(\Omega)$.
Reamrk. $g(X)$ is a random vector if $X \in \mathbb{R}^d$ is a random variable and $g: \mathbb{R}^d \rightarrow \mathbb{R}^k$ is measurable.
Proposition.
for any measurable $g: \mathbb{R}^d \rightarrow \mathbb{R}$ such that this sum is well-defined.
(PP 5.2) Marginals and conditionals
Deal with 2-dimensional case only.
Fix $(X, Y) \in \mathbb{R}^2$ with $p(x, y) = P[X=x, Y=y]$.
Definition. The marginal PMF of $X$ is $p_X(x) = P[X = x]$.
Proposition.
Proof. $p_X(x) = P[X=x] = \sum_{y \in \mathscr{Y}} P[X=x, Y=y] = \sum_{y \in \mathscr{Y}}p(x,y)$
noting $\{\omega \in \Omega : X(\omega) = x\}
= \cup_{y \in \mathscr{Y}}\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}$
Notation. $p(x) = p_X(x)$, $p(y) = p_Y(y)$
Definition. The conditional PMF of $X$ given $Y=y$ is
(when $P[Y=y] > 0$.)
Remark.
Definition. The conditional expectation of $X$ given $Y=y$ (when $p(y) > 0$) is
when this sum is well-defined.
Remark. $\mathbb{E}(X\vert Y)$ is a random variable that depends on the random variable $Y$.
(PP 5.3) Multiple random variables with densities
(PP 5.4) Independence, Covariance, and Correlation
Consider random variables $X, Y, Z$ etc on $(\Omega, \mathcal{A}, P)$.
$\leadsto$ arise joint distributions (for random vectors)
Definition. $X, Y$ independent if
(discrete) $\,\,\,$ $p(x, y) = p(x) p(y)$ for all $x \in \mathscr{X}, y \in \mathscr{Y}$.
(density) $\,\,\,$ $p(x, y) = f(x) f(y)$ for all $x \in \mathbb{R}, y \in \mathbb{R}$.
Definition. $X_1, \ldots, X_d$ independent if
(discrete) $\,\,\,$ $p(x_1, \ldots, x_d) = \prod_{i=1}^d p(x_i)$ for all $x_i \in \mathscr{X}i$.
(density) $\,\,\,$ $f(x_1, \ldots, x_d) = \prod{i=1}^d f(x_i)$ for all $x_i \in \mathscr{X}_i$.
Theorem. TAFE.
- $X, Y$ independent;
- $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all $A, B \in \mathbb{B}(\mathbb{R})$;
- $g(X), h(Y)$ independent for all measurable $g, h: \mathbb{R} \rightarrow \mathbb{R}$;
- $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$ for all measurable $g, h: \mathbb{R} \rightarrow \mathbb{R}_{\ge 0}$;
- $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$ for all measurable $g, h: \mathbb{R} \rightarrow \mathbb{R}_{\ge 0}$ s.t. $\mathbb{E}(\vert g(X)\vert), \mathbb{E}(\vert h(Y)\vert) < \infty$.
Remark. $X, Y$ independent & $\mathbb{E}(\vert X\vert), \mathbb{E}(\vert Y\vert) < \infty$
implies $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.
But not conversely.
Definition. The covariance of $X, Y$ is
Remark.
- ${\rm Cov}(X, X) = \sigma^2(X)$
- ${\rm Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$
- $X, Y$ independnet $\Rightarrow$ ${\rm Cov}(X, Y) = 0$
Definition. The (Pearson) correlation coefficient of $X, Y$ is
(PP 5.5) Law of large numbers and Central limit theorem
Definition. $X_1, \ldots, X_n$ iid (independent and identically distributed) if they are independent and $p_{X_1} = \cdots = p_{X_n}$ ($f_{X_1} = \cdots = f_{X_n}$)
Let $X_1, \ldots, X_n$ be iid with mean $\mu$ and variance $0< \sigma^2 < \infty$.
Theorem. (LLN) “very intuitive result”
w.p. $1$ (almost surely).
Example. $X \sim$ Bernoulli$(\mu)$, $X_i \in {0, 1}$.
Theorem. (CLT) “astonishing” (very surprising)
in the sense that the cdf of the former converges to tht latter.
Subscribe via RSS